FREE Shipping on domestic orders over 500+ Independent Testing to meet quality standards. USA-Domestic Delivery and same-day shipping FREE Shipping on domestic orders over 250+ Independent Testing to meet quality standards. USA-Domestic Delivery and same-day shipping

What are you looking for?

Quality control

Our Quality Mission

Our quality mission is to deliver the highest quality reference materials for life science research. As a leader in the market we are proud to drive innovation through a commitment to client goals, scientific rigor, sustainable operations and public advocacy.

We strive for continuous improvement in this Mission by maintaining our core values of: Quality First, People Matter, and Pursuit of Excellence.

Our Quality Control Practices

Receiving and Sampling

When we receive new raw material, we place it in quarantine – a clearly marked area separated from approved raw materials. Materials in this area are only handled by employees who gather samples for testing and cannot be used in production or sent to clients until all testing procedures and documentation is complete.

Any given shipment of raw material can contain several containers of the same product. To be sure all the material is up to our quality standards, samples are taken from every container. A composite sample is then blended from these samples and sent to a third party lab for analysis.

Each sample goes through several tests. Different products undergo different analyses based on the product’s chemical composition and properties. A product’s specification data sheet discloses which tests are performed and our minimum standards. These specifications are publicly posted for every product on the product listing page.

Transparent Batch & Lot Tracking

To ensure our products are consistent and meet the highest standards of quality, every batch of raw material and every production lot of finished goods is assigned a unique tracking number (LOT #) to identify it during our quarantine, production and post-purchase processes.

Where to Find Lab Reports for Your Product

Every LOT number is tied to a Certificate of Analysis (COA) from an independent third party laboratory. Each finished product’s LOT # is visible on the product label. You can find the COAs and lab reports for your product on the product listing, under the section titled Third Party Analysis. Batch Purity reports refer to batches of raw materials which must be correctly identified and quantitated. Potency Audits refer to the concentration of liquid products which will not vary more than ±10% from the posted concentration.

Third Party Testing

Every batch of every product is sent out for analysis and verified by an independent third party laboratory both quantitatively (purity) and qualitatively (identity) as well as for contaminants. A list of testing techniques we used and a brief explanation of each is listed below:

HPLC – Purity & Identification

High Performance Liquid Chromatography (HPLC) is the method by which most products are tested for purity. This method is utilized when there is a single molecule or class of molecules that can be assayed for. HPLC relies on pumps to pass a pressurized liquid and a sample mixture through a column filled with adsorbent, leading to the separation of the sample components based on the strength of their attraction to the adsorbent, after which they are analyzed by shining light on the separate sample components as they come off the column.
Most organic compounds absorb a certain amount of light, so as they pass by the applied light beam, a detector can pick up how much light is absorbed. The detector also records the components’ retention time based on the order in which they come off the column. This output can then be analyzed based on peak area to determine the exact nature of the sample’s components or fed into another analytical machine for additional analysis as in the case of LC-MS.

NMR Spectroscopy – Structure & Identification

Nuclear Magnetic Resonance Spectroscopy (NMR) is a spectroscopic technique to observe local magnetic fields around atomic nuclei. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds.

Samples are placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups.

TLC – Purity & Identification

Thin-Layer Chromatography (TLC) is a chromatography technique used to separate non-volatile mixtures. We use this method for plant extracts made up of many different compounds. TLC is essentially a rudimentary 2-dimensional flash chromatography, except the mobile phase travels up a plate via capillary action instead of down a column. TLC is performed on a sheet of glass, plastic, or aluminium foil, which is coated with a thin layer of adsorbent material, usually silica gel, aluminium oxide (alumina), or cellulose. This layer of adsorbent is known as the stationary phase.

Thin-layer chromatography can be used to monitor the progress of a reaction, identify compounds present in a given mixture, and determine the purity of a substance.

ICP-MS – Heavy Metal Testing

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a type of mass spectrometry which is capable of detecting metals and several non-metals at concentrations as low as one part in 1015 (part per quadrillion, ppq) on non-interfered low-background isotopes. This is achieved by ionizing the sample with inductively coupled plasma and then using a mass spectrometer to separate and quantify those ions. We use this technique to test for toxic heavy metal contamination. All products undergo this test, specifically for arsenic, cadmium, mercury, and lead.

Microbiology Panel – Contaminant Testing

The microbiology panel involves ensuring products are below acceptable limits for common and dangerous microbes by culturing samples with growth media for pathogenic species. All products that are extracts of biological entities undergo this panel. The tests included in the panel are the Total Aerobic Plate Count, Yeast; Mold Count, E. Coli presence, S. Aureus presence, and Salmonella presence.

GC-MS – Contaminant Testing

Gas chromatography–mass spectrometry (GC-MS) is an analytical method that combines the features of gas-chromatography and mass spectrometry to identify different substances within a mixed test sample. Applications of GC-MS include drug detection, fire investigation, environmental analysis, explosives investigation, and identification of unknown samples. GC-MS has been regarded as a “gold standard” for forensic substance identification because it is used to perform a 100% specific test, which positively identifies the presence of a particular substance. A nonspecific test merely indicates that any of several in a category of substances is present. Although a nonspecific test could statistically suggest the identity of the substance, this could lead to false positive identification.

We use GC-MS to test for residual solvents, pesticides and other contaminants in plant extracts.